首页    期刊浏览 2025年08月09日 星期六
登录注册

文章基本信息

  • 标题:Prediction Model by Using Bayesian and Cognition-driven Techniques: A Study in the Context of Obstructive Sleep Apnea
  • 本地全文:下载
  • 作者:Doreen Ying Ying Sim ; Doreen Ying Ying Sim ; Chee Siong Teh
  • 期刊名称:Procedia - Social and Behavioral Sciences
  • 印刷版ISSN:1877-0428
  • 出版年度:2013
  • 卷号:97
  • 页码:528-537
  • DOI:10.1016/j.sbspro.2013.10.269
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis research proposes a mechanism for cost-effective medical diagnostic support for relatively new physical ailments or diseases where there are incomplete data sets available and hence, common parameters are forced to be used for drawing a- priori inferences. We propose a simple but powerful prediction model that combines the advantages of the Bayesian Approaches and Cognition-Driven Techniques such as Expert Reasoning (ER) and Cognitive Reasoning (CR) using Markov Chain analyses. Then, we demonstrate the effectiveness of our approach in predicting Obstructive Sleep Apnea (OSA).
  • 关键词:diagnostic support;a-priori inferences;Bayesian Approaches and Cognition-Driven Techniques;Expert Reasoning (ER);Cognitive Reasoning (CR);Markov Chain analyses;Obstructive Sleep Apnea (OSA)
国家哲学社会科学文献中心版权所有