首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:Automatic Access to Legal Terminology Applying Two Different Automatic Term Recognition Methods
  • 本地全文:下载
  • 作者:María José Marín Pérez ; María José Marín Pérez ; Camino Rea Rizzo
  • 期刊名称:Procedia - Social and Behavioral Sciences
  • 印刷版ISSN:1877-0428
  • 出版年度:2013
  • 卷号:95
  • 页码:455-463
  • DOI:10.1016/j.sbspro.2013.10.669
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractAutomatic term recognition (ATR) methods help to identify the most representative terms in a corpus automatically, saving time and allowing managing large amounts of data that could not be dealt with manually. This paper presents the evaluation of two ATR methods implemented on a 2.6 million-word legal corpus designed and compiledad hoc:Keywords (Scott, 2008) and Chung's method (2003).Both techniques have been assessed as regards precision and recall. The results clearly show that Keywords is, by far, the most efficient one achieving to recognize 62% true terms out of the 2,000 items evaluated in this study.
  • 关键词:automatic term recognition;legal English;specialised corpora
国家哲学社会科学文献中心版权所有