首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Distributed optimization for multi-task learning via nuclear-norm approximation ∗
  • 本地全文:下载
  • 作者:David Mateos-Núñez ; Jorge Cortés ; Jorge Cortes
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:22
  • 页码:64-69
  • DOI:10.1016/j.ifacol.2015.10.308
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe exploit a variational characterization of the nuclear norm to extend the framework of distributed convex optimization to machine learning problems that focus on the sparsity of the aggregate solution. We propose two distributed dynamics that can be used for multi-task feature learning and recommender systems in scenarios with more tasks or users than features. Our first dynamics tackles a convex minimization on local decision variables subject to agreement on a set of local auxiliary matrices. Our second dynamics employs a saddle-point reformulation through Fenchel conjugation of quadratic forms, avoiding the computation of the inverse of the local matrices. We show the correctness of both coordination algorithms using a general analytical framework developed in our previous work that combines distributed optimization and subgradient methods for saddle-point problems.
  • 关键词:KeywordsDistributed optimizationmulti-task learningnuclear normmatrix completion
国家哲学社会科学文献中心版权所有