首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Corrosion Fault Diagnosis of Rolling Element Bearing under Constant and Variable Load and Speed Conditions
  • 本地全文:下载
  • 作者:S. Sharma ; W. Abed ; R. Sutton
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:30
  • 页码:49-54
  • DOI:10.1016/j.ifacol.2015.12.352
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractRolling element bearing defects is one of the main reasons for breakdown in electrical machines. Robust fault analysis (FA) including the diagnosis of faults and predicting their level of fault severity is thus necessary to optimise maintenance, improve reliability and to avoid more catastrophic failure consequences. The proposed diagnostic methods in this paper use the innovative discrete wavelet transform (DWT) for feature extraction and an orthogonal fuzzy neighbourhood discriminative analysis (OFNDA) approach for feature reduction. The dynamic recurrent neural network predicts the conditions of components and classifies faults under different operating conditions. The results obtained from the real time simulation demonstrate the effectiveness and reliability of the proposed methodology in classifying the different faults faster and accurately.
  • 关键词:KeywordsFault analysisfeatures extractiondimensionality reductiondynamic recurrent neural network
国家哲学社会科学文献中心版权所有