首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Scaling of Hodge-Kodaira decomposition distinguishes learning rules of neural networks *
  • 本地全文:下载
  • 作者:Keiji Miura ; Takaaki Aoki
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:18
  • 页码:175-180
  • DOI:10.1016/j.ifacol.2015.11.032
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn analyzing a complex network in the real world, it is ideally of great help to recognize its universality class. While biological networks, in particular, grow under various ‘learning rules’, their impacts on scaling have not yet been characterized enough. Here we applied the Hodge-Kodaira decomposition, a topological method to count global loops, to neural networks with different learning rules and edge densities. Interestingly, the networks which evolved under different learning rules showed different scalings with edge densities. The causal learning rule scaled similarly to its underlying graph (i.e. Erdös-Renyi random graph, in this study), on which a network can grow, while the Hebbian-like rule did not.
  • 关键词:Keywordschaososcillatorssynchronizationnetworkslearning algorithmsneural dynamicsHodge decomposition
国家哲学社会科学文献中心版权所有