首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A Bayesian Approach to Model-Development: Automatic Learning for Tuning Predictive Performance
  • 本地全文:下载
  • 作者:Logan Ward ; Steen Andreassen
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:20
  • 页码:481-486
  • DOI:10.1016/j.ifacol.2015.10.187
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe value of manually constructed and tuned Bayesian networks has been demonstrated empirically, however this informal process is limited in terms of what can be reasonably achieved. This paper presents the application of a formal machine learning process, EM learning, to a manually constructed CPN for the assessment of the severity of sepsis. Through learning, the model is tuned to predict 30-day mortality, and displays a significant improvement in discriminatory ability assessed by area under the ROC curve (previous model AUC = 0.647, new model AUC = 0.739, p<0.001).
  • 关键词:Key WordsMachine learningBiological and medical system modellingSystem identification and validation
国家哲学社会科学文献中心版权所有