首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Efficient particle continuation model predictive control
  • 本地全文:下载
  • 作者:Andrew Knyazev ; Alexander Malyshev
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:25
  • 页码:287-291
  • DOI:10.1016/j.ifacol.2015.11.102
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractContinuation model predictive control (MPC), introduced by T. Ohtsuka in 2004, uses Krylov-Newton approaches to solve MPC optimization and is suitable for nonlinear and minimum time problems. We suggest particle continuation MPC in the case, where the system dynamics or constraints can discretely change on-line. We propose an algorithm for on-line controller implementation of continuation MPC for ensembles of predictions corresponding to various anticipated changes and demonstrate its numerical effectiveness for a test minimum time problem arriving to a destination. Simultaneous on-line particle computation of ensembles of controls, for several dynamically changing system dynamics, allows choosing the optimal destination on-line and adapt it as needed.
  • 关键词:Keywordsnonlinear model predictive controlparticle controlNewton-Krylov method
国家哲学社会科学文献中心版权所有