首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Gray-box LPV model identification of a 2-DoF surgical robotic manipulator by using an H ∞-norm-based local approach
  • 本地全文:下载
  • 作者:Daniel Vizer ; Guillaume Mercère ; Edouard Laroche
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:26
  • 页码:79-84
  • DOI:10.1016/j.ifacol.2015.11.117
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIdentifying a linear parameter-varying (LPV) model of a non-linear system from local experiments (i.e., experiments with small displacements around given positions) is a problem which still deserves attention. Rather than building a model either from the law of physics or from experimental data independently the combination of an analytic and an experimental approach is used in this paper to identify an LPV model of a 2-DoF flexible surgical robotic manipulator. This LPV model is more precisely estimated by applying a dedicated Hoo-norm-based technique to yield a final parameter dependent model written as a linear fractional representation (LFR). This contribution demonstrates the effectiveness of the used Hoo-norm-based identification technique by applying real data sequences gathered on a real flexible robotic manipulator.
  • 关键词:Keywordsgray-box LPV model identificationH∞-norm-based optimizationrobotic applicationreal data sequences
国家哲学社会科学文献中心版权所有