摘要:AbstractA common issue with many system identification problems is that the true input to the system is unknown. In this paper, a framework, based on indirect input measurements, is proposed to solve the problem when the input is partially or fully unknown, and cannot be measured directly. The approach relies on measurements that indirectly contain information about the unknown input. The resulting indirect model formulation, with both direct and indirect input measurements as inputs, can be used to estimate the desired model of the original system. Due to the similarities with closed-loop system identification, an iterative instrumental variable method is proposed to estimate the indirect model. To show the applicability of the proposed method, it is applied to data from an inverted pendulum experiment with good results