首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Data Quantisation and Closed-Loop System Identification
  • 本地全文:下载
  • 作者:Yuri A.W. Shardt ; Steven X. Ding
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:28
  • 页码:128-133
  • DOI:10.1016/j.ifacol.2015.12.112
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn the development of a rigorous and complete procedure for automating the performance of data-driven process identification, there is a need to consider data quantisation. Such an issue can arise when the sensors have not been properly calibrated for the range of values experienced in the actual process. Through a detailed mathematical analysis of the problem, it is shown that the ratio between the variance of the signal and the gap between quantisation levels strongly influences the ability to identify a process. Using this criterion, a data quantisation index is proposed that allows for the effect of data quantisation on the data system to be quantified. Monte Carlo simulations of a closed-loop system with different system properties is examined to show that the proposed index can accurately distinguish between good and bad data quantisation.
  • 关键词:Keywordssystem identificationdata quantisationprocess monitoring
国家哲学社会科学文献中心版权所有