首页    期刊浏览 2025年06月18日 星期三
登录注册

文章基本信息

  • 标题:Sparse Bayesian Identification of Polynomial NARX Models
  • 本地全文:下载
  • 作者:William R. Jacobs ; Tara Baldacchino ; Sean R. Anderson
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:28
  • 页码:172-177
  • DOI:10.1016/j.ifacol.2015.12.120
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper a novel sparse Bayesian structure detection algorithm is introduced for the identification of nonlinear autoregressive with exogenous inputs (NARX) dynamic systems. The main advantage of this algorithm over alternatives is that parameter uncertainty is naturally incorporated, and parameter estimation by variational inference is computationally efficient, consisting of a sequence of closed form updates. The proposed framework is demonstrated through a commonly used simulated benchmark problem.
  • 关键词:KeywordsNARX modelsvariational Bayessystem identificationautomatic relevance determination
国家哲学社会科学文献中心版权所有