首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Predicting Transmembrane β-barrel Segments with Chain Learning and Sparse Coding
  • 本地全文:下载
  • 作者:Yin Xi ; Shen Hong-Bin
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:28
  • 页码:245-250
  • DOI:10.1016/j.ifacol.2015.12.133
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe developed a novel method named MemBrain-TMB to predict the spanning segments of transmembrane Â-barrel from amino acid sequence. MemBrain-beta is a statistical machine learningbased model, which is constructed using a new chain learning algorithm with the input features are encoded by the image sparse representation approach. To deal with the diverse loop length problem, we applied a dynamic threshold method, which is particularly useful for enhancing the recognition of short loops and tight turns. MemBrain-TMB achieves a Q2 accuracy of 93% and SOV of 97% on the benchmark dataset, which is 5%~10% higher than other existing predictors.
  • 关键词:KeywordsMachine learningPattern recognitionImage processingPrediction methodsEvaluation
国家哲学社会科学文献中心版权所有