首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Identifiability and Parameter Estimation of Linear Continuous-time Systems under Irregular and Random Sampling *
  • 本地全文:下载
  • 作者:Biqiang Mu ; Jin Guo ; Le Yi Wang
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:28
  • 页码:332-337
  • DOI:10.1016/j.ifacol.2015.12.149
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper considers the problem of identifiability and parameter estimation of single-input-single-output, linear, time-invariant, stable, continuous-time systems under irregular and random sampling schemes. Conditions for system identifiability are established under inputs of exponential polynomial types and a tight bound on sampling density. Identification algorithms of Gauss-Newton iterative types are developed to generate convergent estimate sequences. When the sampled output is corrupted by observation noises, input design, sampling times, and convergent algorithms are intertwined. Persistent excitation (PE) conditions for strongly convergent algorithms are derived. Unlike the traditional identification, the PE conditions under irregular and random sampling involve both sampling times and input values. Under the given PE conditions, iterative and recursive algorithms are developed to estimate the original continuous-time system parameters. The corresponding convergence results are obtained. Several simulation examples are displayed to verify the theoretical results.
  • 关键词:KeywordsLinear Continuous-time Systemsirregular samplingidentifiabilitynonlinear least squareestimation algorithmsconvergence and asymptotical normality
国家哲学社会科学文献中心版权所有