首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Newton-based maximum likelihood estimation in nonlinear state space models *
  • 本地全文:下载
  • 作者:Manon Kok ; Johan Dahlin ; Thomas B. Schön
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:28
  • 页码:398-403
  • DOI:10.1016/j.ifacol.2015.12.160
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractMaximum likelihood (ML) estimation using Newton's method in nonlinear state space models (SSMs) is a challenging problem due to the analytical intractability of the loglikelihood and its gradient and Hessian. We estimate the gradient and Hessian using Fisher's identity in combination with a smoothing algorithm. We explore two approximations of the log-likelihood and of the solution of the smoothing problem. The first is a linearization approximation which is computationally cheap, but the accuracy typically varies between models. The second is a sampling approximation which is asymptotically valid for any SSM but is more computationally costly. We demonstrate our approach for ML parameter estimation on simulated data from two different SSMs with encouraging results.
  • 关键词:KeywordsMaximum likelihoodparameter estimationnonlinear state space modelsFisher's identityextended Kalman filtersparticle methodsNewton optimization
国家哲学社会科学文献中心版权所有