首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Bayesian kernel-based system identification with quantized output data
  • 本地全文:下载
  • 作者:Giulio Bottegal ; Gianluigi Pillonetto ; Håkan Hjalmarsson
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:28
  • 页码:455-460
  • DOI:10.1016/j.ifacol.2015.12.170
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper we introduce a novel method for linear system identification with quantized output data. We model the impulse response as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline kernel, which encodes information on regularity and exponential stability. This serves as a starting point to cast our system identification problem into a Bayesian framework. We employ Markov Chain Monte Carlo (MCMC) methods to provide an estimate of the system. In particular, we show how to design a Gibbs sampler which quickly converges to the target distribution. Numerical simulations show a substantial improvement in the accuracy of the estimates over state-of-the-art kernel-based methods when employed in identification of systems with quantized data.
国家哲学社会科学文献中心版权所有