首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:RBFNN Based Linear Motor Cogging Force Identification for Lithography Machines
  • 本地全文:下载
  • 作者:Yang Liu ; Xiandong Xu ; Zhenyu Chen
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:28
  • 页码:650-655
  • DOI:10.1016/j.ifacol.2015.12.203
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe cogging force of linear motors significantly affects the positioning accuracy in ultraprecision lithography machines. Optimal motor design cannot completely eliminate it, leaving the realtime active compensation as the only means to counteract its adverse effect. This requires the real-time identification of the cogging force, which is however a challenging issue. Traditional approaches are either computationally too expensive or practically infeasible. This paper proposes to develop a two-stage trained RBF neural model for the detent force identification of the ultra-precision wafer stage platform in a lithography machine. Experimental results confirm the effectiveness of this data-driven method.
  • 关键词:Keywordslinear motorsidentificationradial base function networksleast squarespositioning control
国家哲学社会科学文献中心版权所有