首页    期刊浏览 2024年11月05日 星期二
登录注册

文章基本信息

  • 标题:An efficient particle-based online EM algorithm for general state-space models *
  • 本地全文:下载
  • 作者:Jimmy Olsson ; Johan Westerborn
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:28
  • 页码:963-968
  • DOI:10.1016/j.ifacol.2015.12.255
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractEstimating the parameters of general state-space models is a topic of importancefor many scientific and engineering disciplines. In this paper we present an online parameter estimation algorithm obtained by casting our recently proposed particle-based, rapid incremental smoother (PaRIS) into the framework of online expectation-maximization (EM) for state-space models proposed by Cappé (2011). Previous such particle-based implementations of online EM suffer typically from either the well-known degeneracy of the genealogical particle paths or a quadratic complexity in the number of particles. However, by using the computationally efficient and numerically stable PaRIS algorithm for estimating smoothed expectations of timeaveraged sufficient statistics of the model we obtain a fast algorithm with very limited memory requirements and a computational complexity that grows only linearly with the number of particles. The efficiency of the algorithm is illustrated in a simulation study.
  • 关键词:KeywordsEM algorithmrecursive estimationparticle filtersparameter estimationstate space models
国家哲学社会科学文献中心版权所有