首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Nonlinear State Space Smoothing Using the Conditional Particle Filter *
  • 本地全文:下载
  • 作者:Andreas Svensson ; Thomas B. Schön ; Manon Kok
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:28
  • 页码:975-980
  • DOI:10.1016/j.ifacol.2015.12.257
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractTo estimate the smoothing distribution in a nonlinear state space model, we apply the conditional particle filter with ancestor sampling. This gives an iterative algorithm in a Markov chain Monte Carlo fashion, with asymptotic convergence results. The computational complexity is analyzed, and our proposed algorithm is successfully applied to the challenging problem of sensor fusion between ultrawideband and accelerometer/gyroscope measurements for indoor positioning. It appears to be a competitive alternative to existing nonlinear smoothing algorithms, in particular the forward filtering-backward simulation smoother.
  • 关键词:KeywordsSmoothingParticle filtersNonlinear systemsState estimationMonte Carlo methodSensor fusionPosition estimation
国家哲学社会科学文献中心版权所有