首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:RatingScaleReduction package: stepwise rating scale item reduction without predictability loss
  • 本地全文:下载
  • 作者:Waldemar W. Koczkodaj ; Feng Li ; Alicja Wolny–Dominiak
  • 期刊名称:R News
  • 印刷版ISSN:1609-3631
  • 出版年度:2018
  • 卷号:10
  • 期号:1
  • 页码:43-55
  • 语种:English
  • 出版社:The R Foundation for Statistical Computing
  • 摘要:This study presents an innovative method for reducing the number of rating scale items without predictability loss. The “area under the receiver operator curve” method (AUC ROC) is used for the stepwise method of reducing items of a rating scale. RatingScaleReduction R package contains the presented implementation. Differential evolution (a metaheuristic for optimization) was applied to one of the analyzed datasets to illustrate that the presented stepwise method can be used with other classifiers to reduce the number of rating scale items (variables). The targeted areas of application are decision making, data mining, machine learning, and psychometrics. Keywords: rating scale, receiver operator characteristic, ROC, AUC, scale reduction.
国家哲学社会科学文献中心版权所有