首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Support Vector Machines for Survival Analysis with R
  • 本地全文:下载
  • 作者:Césaire J. K. Fouodo ; Inke R. König ; Claus Weihs
  • 期刊名称:R News
  • 印刷版ISSN:1609-3631
  • 出版年度:2018
  • 卷号:10
  • 期号:1
  • 页码:412-423
  • 语种:English
  • 出版社:The R Foundation for Statistical Computing
  • 摘要:This article introduces the R package survivalsvm, implementing support vector machines for survival analysis. Three approaches are available in the package: The regression approach takes censoring into account when formulating the inequality constraints of the support vector problem. In the ranking approach, the inequality constraints set the objective to maximize the concordance index for comparable pairs of observations. The hybrid approach combines the regression and ranking constraints in a single model. We describe survival support vector machines and their implementation, provide examples and compare the prediction performance with the Cox proportional hazards model, random survival forests and gradient boosting using several real datasets. On these datasets, survival support vector machines perform on par with the reference methods.
国家哲学社会科学文献中心版权所有