首页    期刊浏览 2025年04月17日 星期四
登录注册

文章基本信息

  • 标题:FHDI: An R Package for Fractional Hot Deck Imputation
  • 本地全文:下载
  • 作者:Jongho Im ; In Ho Cho ; Jae Kwang Kim
  • 期刊名称:R News
  • 印刷版ISSN:1609-3631
  • 出版年度:2018
  • 卷号:10
  • 期号:1
  • 页码:140-154
  • 语种:English
  • 出版社:The R Foundation for Statistical Computing
  • 摘要:Fractional hot deck imputation (FHDI), proposed by Kalton and Kish (1984) and investigated by Kim and Fuller (2004), is a tool for handling item nonresponse in survey sampling. In FHDI, each missing item is filled with multiple observed values yielding a single completed data set for subsequent analyses. An R package FHDI is developed to perform FHDI and also the fully efficient fractional imputation (FEFI) method of (Fuller and Kim, 2005) to impute multivariate missing data with arbitrary missing patterns. FHDI substitutes missing items with a few observed values jointly obtained from a set of donors whereas the FEFI uses all the possible donors. This paper introduces FHDI as a tool for implementing the multivariate version of fractional hot deck imputation discussed in Im et al. (2015) as well as FEFI. For variance estimation of FHDI and FEFI, the Jackknife method is implemented, and replicated weights are provided as a part of the output.
国家哲学社会科学文献中心版权所有