首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Fault detection through evolving fuzzy cloud-based model ⁎
  • 本地全文:下载
  • 作者:Goran Andonovski ; Gašper Mušič ; Igor Škrjanc
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:2
  • 页码:795-800
  • DOI:10.1016/j.ifacol.2018.04.011
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractAn evolving fuzzy model for fault detection is presented in this paper. The method is based on simplified, non-parametric fuzzy model named AnYa. The novelty in this paper is the partial density estimation where only the most influential components are used. The proposed method is tested on simulated data of Tennessee Eastman Process model and furthermore, the results are compared with well established fault detection methods, i.e. PCA (Partial Component Analysis), ICA (Independent Component Analysis), and FDA (Fisher Discriminant Analysis). The results show that the proposed method is capable of detecting different fault types with very high accuracy.
  • 关键词:KeywordsEvolving fuzzy modelfault detectionpartial density estimationTennessee Eastman model
国家哲学社会科学文献中心版权所有