首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Germinal Center Optimization Applied to Recurrent High Order Neural Network Observer
  • 本地全文:下载
  • 作者:Jorge D. Rios ; Carlos Villaseñor ; Alma Y. Alanis
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:13
  • 页码:332-337
  • DOI:10.1016/j.ifacol.2018.07.300
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this work, a germinal center optimization (GCO) algorithm which implements temporal leadership through modeling a non-uniform competitive-based distribution for particle selection is used to find an optimal set of parameters for a recurrent high order neural network observer (RHONNO). The RHONNO is trained with an extended Kalman filter algorithm and it is capable of giving a model of the system besides of just giving state estimation. Furthermore, the RHONNO does not need previous knowledge of the system model, nor measurements, estimation or bounds of delays and disturbances. Applicability of the proposed methodology is presented using simulation results.
  • 关键词:KeywordsAdaptive algorithmsParameter optimizationNeural networksState estimationExtended Kalman filtersModellingTime-delay
国家哲学社会科学文献中心版权所有