首页    期刊浏览 2025年07月13日 星期日
登录注册

文章基本信息

  • 标题:Control Synthesis and Classification for Unicycle Dynamics using the Gradient and Value Sampling Particle Filters ⁎
  • 本地全文:下载
  • 作者:Ariadna Estrada ; Ian M. Mitchell
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:16
  • 页码:290-295
  • DOI:10.1016/j.ifacol.2018.08.049
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractValue functions arising from dynamic programming can be used to synthesize optimal control inputs for general nonlinear systems with state and/or input constraints; however, the inputs generated by steepest descent on these value functions often lead to chattering behavior. In [Traft & Mitchell, 2016] we proposed the Gradient Sampling Particle Filter (GSPF), which combines robot state estimation and nonsmooth optimization algorithms to alleviate this problem. In this paper we extend the GSPF to velocity controlled unicycle (or equivalently differential drive) dynamics. We also show how the algorithm can be adapted to classify whether an exogenous input—such as one arising from shared human-in-the-loop control—is desirable. The two algorithms are demonstrated on a ground robot.
  • 关键词:KeywordsPath planningstate uncertaintystate constraintcontrol synthesisvalue functionHamilton-Jacobi equationparticle filtershared controlhuman-in-the-loop
国家哲学社会科学文献中心版权所有