首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Assimilating the LAI Data to the VEGAS Model Using the Local Ensemble Transform Kalman Filter: An Observing System Simulation Experiment
  • 本地全文:下载
  • 作者:Jia Bing-Hao ; Ning Zeng ; Xie Zheng-Hui
  • 期刊名称:Atmospheric and Oceanic Science Letters
  • 印刷版ISSN:1674-2834
  • 电子版ISSN:2376-6123
  • 出版年度:2014
  • 卷号:7
  • 期号:4
  • 页码:314-319
  • DOI:10.3878/j.issn.1674-2834.13.0094
  • 语种:English
  • 出版社:Taylor and Francis Ltd
  • 摘要:Information on the spatial and temporal patterns of surface carbon flux is crucial to understanding of source/sink mechanisms and projection of future atmospheric CO2 concentrations and climate. This study presents the construction and implementation of a terrestrial carbon cycle data assimilation system based on a dynamic vegetation and terrestrial carbon model Vegetation-Global-Atmosphere-Soil (VEGAS) with an advanced assimilation algorithm, the local ensemble transform Kalman filter (LETKF, hereafter LETKF-VEGAS). An observing system simulation experiment (OSSE) framework was designed to evaluate the reliability of this system, and numerical experiments conducted by the OSSE using leaf area index (LAI) observations suggest that the LETKF-VEGAS can improve the estimations of leaf carbon pool and LAI significantly, with reduced root mean square errors and increased correlation coefficients with true values, as compared to a control run without assimilation. Furthermore, the LETKF-VEGAS has the potential to provide more accurate estimations of the net primary productivity (NPP) and carbon flux to atmosphere (CFta).
  • 关键词:carbon cycle; data assimilation; VEGAS; land-atmosphere CO2 flux; LETKF; OSSE
国家哲学社会科学文献中心版权所有