首页    期刊浏览 2024年07月01日 星期一
登录注册

文章基本信息

  • 标题:Three-Step Difference Scheme for Solving Nonlinear Time-Evolution Partial Differential Equations
  • 本地全文:下载
  • 作者:Gong Jing ; Wang Bin ; Ji Zhong-Zhen
  • 期刊名称:Atmospheric and Oceanic Science Letters
  • 印刷版ISSN:1674-2834
  • 电子版ISSN:2376-6123
  • 出版年度:2013
  • 卷号:6
  • 期号:6
  • 页码:423-427
  • DOI:10.3878/j.issn.1674-2834.13.0036
  • 语种:English
  • 出版社:Taylor and Francis Ltd
  • 摘要:In this paper, a special three-step difference scheme is applied to the solution of nonlinear time-evolution equations, whose coefficients are determined according to accuracy constraints, necessary conditions of square conservation, and historical observation information under the linear supposition. As in the linear case, the schemes also have obvious superiority in overall performance in the nonlinear case compared with traditional finite difference schemes, e.g., the leapfrog (LF) scheme and the complete square conservation difference (CSCD) scheme that do not use historical observations in determining their coefficients, and the retrospective time integration (RTI) scheme that does not consider compatibility and square conservation. Ideal numerical experiments using the one-dimensional nonlinear advection equation with an exact solution show that this three-step scheme minimizes its root mean square error (RMSE) during the first 2500 integration steps when no shock waves occur in the exact solution, while the RTI scheme outperforms the LF scheme and CSCD scheme only in the first 1000 steps and then becomes the worst in terms of RMSE up to the 2500th step. It is concluded that reasonable consideration of accuracy, square conservation, and historical observations is also critical for good performance of a finite dif-ference scheme for solving nonlinear equations.
  • 关键词:three-step difference scheme; nonlinear; square conservation; accuracy; historical observations
国家哲学社会科学文献中心版权所有