首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Classification of Peanut Images Based on Multi-features and SVM
  • 本地全文:下载
  • 作者:Zhenbo Li ; Bingshan Niu ; Fang Peng
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:17
  • 页码:726-731
  • DOI:10.1016/j.ifacol.2018.08.110
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis article provides a method for accurate classification of peanuts. Peanuts can be classified into three categories, including one peanut, two peanuts and three peanuts. Because different peanuts have different prices. The characteristics of peanut images were extracted by three different methods including the convolution neural network of aspect ratio, HOG and Hu invariant moment, and then classifying peanut images respectively by the SVM (support vector machine). The accuracy rate of the aspect ratio + SVM algorithm, HOG+SVM algorithm, Hu invariant moment +SVM algorithm respectively is 96.72%, 81.97% and 81.97%, realize the industrialization of peanut classification.
  • 关键词:Keywordsimage classificationHOGAspect ratioHu invariant momentSVM
国家哲学社会科学文献中心版权所有