摘要:Abstract
We use the Weather Research and Forecast model using the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) dust module (WRF‐CHEM) to simulate the particulate matter (PM) variations in the Sahel during the winter seasons (January–March) of 1960–2014. Two simulations are undertaken where the direct aerosol feedback is turned off, and only transport is considered and where the direct aerosol feedback is turned on. We find that simulated Sahelian PM10 and PM2.5 concentrations were lower in the 1960s and after 2003 and higher during the period between 1988 and 2002. Higher Sahelian PM10 concentrations are due to stronger winds between the surface and 925 hPa over the Sahara, which transport dust into the Sahel. Negative PM10 concentration anomalies are found over the Bodele Depression and associated with weaker 925 wind anomalies after 1997 through 2014. Further west, positive PM10 concentration anomalies are found across the Adrar Plateau in the Sahara and responsible for dust transport to the Western Sahel. The North Atlantic Oscillation (NAO) is positively correlated to Sahelian dust concentrations especially during the periods of 1960–1970 and 1988–2002. The temporal/spatial patterns of PM10 concentrations have significant respiratory health implications for inhabitants of the Sahel.
Key Points
Decadal variations in Sahelian PM10 and PM2.5 concentrations are strongly related to Saharan wind speed magnitude anomalies between the surface and 925 hPa
The highest correlations among the North Atlantic Oscillation and simulated Sahelian and Saharan PM10 seasonal anomalies between 1960–1970 and 1988–2002 are observed
Improved ambient air pollution and health monitoring is a critical need for determining the connections between particulate matter and respiratory disease in the Sahel