首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Photoinduced polycyclic aromatic hydrocarbon dehydrogenation
  • 其他标题:Molecular hydrogen formation in dense PDRs
  • 本地全文:下载
  • 作者:P. Castellanos ; A. Candian ; H. Andrews
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2018
  • 卷号:616
  • DOI:10.1051/0004-6361/201833221
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:The physical and chemical conditions in photodissociation regions (PDRs) are largely determined by the influence of far ultraviolet radiation. Far-UV photons can efficiently dissociate molecular hydrogen, a process that must be balanced at the HI/H2 interface of the PDR. Given that reactions involving hydrogen atoms in the gas phase are highly inefficient under interstellar conditions, H2 formation models mostly rely on catalytic reactions on the surface of dust grains. Additionally, molecular hydrogen formation in polycyclic aromatic hydrocarbons (PAHs) through the Eley–Rideal mechanism has been considered as well, although it has been found to have low efficiency in PDR fronts. In a previous work, we have described the possibility of efficient H2 release from medium to large sized PAHs upon photodissociation, with the exact branching between H-/H2-loss reactions being molecule dependent. Here, we investigate the astrophysical relevance of this process, by using a model for the photofragmentation of PAHs under interstellar conditions. We focus on three PAHs cations (coronene, ovalene, and circumcoronene), which represent three possibilities in the branching of atomic and molecular hydrogen losses. We find that, for ovalene (H2-loss dominated) the rate coefficient for H2 formation reaches values of the same order as H2 formation in dust grains. This result suggests that this hitherto disregarded mechanism can account, at least partly, for the high level of molecular hydrogen formation in dense PDRs.
  • 关键词:Key wordsenastrochemistryISM: moleculesmolecular processesphoton-dominated region
国家哲学社会科学文献中心版权所有