首页    期刊浏览 2024年07月09日 星期二
登录注册

文章基本信息

  • 标题:14N/ 15N ratio measurements in prestellar cores with N 2H +: new evidence of 15N-antifractionation ⋆ ⋆⋆
  • 本地全文:下载
  • 作者:E. Redaelli ; L. Bizzocchi ; P. Caselli
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2018
  • 卷号:617
  • DOI:10.1051/0004-6361/201833065
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Context. The15N fractionation has been observed to show large variations among astrophysical sources, depending both on the type of target and on the molecular tracer used. These variations cannot be reproduced by the current chemical models.Aims. Until now, the14N/15N ratio in N2H+has been accurately measured in only one prestellar source, L1544, where strong levels of fractionation, with depletion in15N, are found (14N/15N ≈ 1000). In this paper, we extend the sample to three more bona fide prestellar cores, in order to understand if the antifractionation in N2H+is a common feature of this kind of source.Methods. We observed N2H+, N15NH+, and15NNH+in L183, L429, and L694-2 with the IRAM 30 m telescope. We modelled the emission with a non-local radiative transfer code in order to obtain accurate estimates of the molecular column densities, including the one for the optically thick N2H+. We used the most recent collisional rate coefficients available, and with these we also re-analysed the L1544 spectra previously published.Results. The obtained isotopic ratios are in the range 580–770 and significantly differ with the value, predicted by the most recent chemical models, of ≈440, close to the protosolar value. Our prestellar core sample shows a high level of depletion of15N in diazenylium, as previously found in L1544. A revision of the N chemical networks is needed in order to explain these results.
  • 关键词:enISM: cloudsISM: moleculesISM: abundancesradio lines: ISMstars: formation
国家哲学社会科学文献中心版权所有