首页    期刊浏览 2024年09月06日 星期五
登录注册

文章基本信息

  • 标题:Spectral gradient of the thermal millimetre continuum as a diagnostic for optical thickness in the solar atmosphere
  • 本地全文:下载
  • 作者:A. S. Rodger ; N. Labrosse
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2018
  • 卷号:617
  • DOI:10.1051/0004-6361/201833848
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Aims.In this Letter we aim to show how the gradient of the thermal millimetre continuum spectrum, as emitted from the quiet solar atmosphere, may be used as a diagnostic for the optical thickness regime at the centre of the observing frequency band.Methods.We show the theoretical derivation of the gradient of the millimetre continuum for both logarithmic- and linear-scale spectra. We compare this expression with the empirical relationship between the slope of the millimetre continuum spectrum and the plasma optical thickness computed from both isothermal and multi-thermal two-dimensional cylindrical radiative transfer models.Results.It is found that the logarithmic-scale spectral gradient provides a clear diagnostic for the optical thickness regime for both isothermal and multi-thermal plasmas, provided that a suitable correction is made for a non-constant gaunt factor over the frequency band. For the use of observers we present values for this correction at all ALMA bands and at a wide range of electron temperatures.Conclusions.We find that the spectral gradient can be used to find (a) whether the source is fully optically thin, (b) the optical thickness of the source if it lies within the transitional regime between optically thin and thick plasma (τ≈ 10−1−101), or (c) whether the source is fully optically thick for an isothermal plasma. A multi-thermal plasma will act the same as an isothermal plasma for case (a), however, the transitional regime will only extend fromτ≈ 10−1toτ≈ 100. Aboveτ= 1 the slope of the continuum will depend increasingly on the temperature gradient, as well as the optical thickness, reducing the reliability of the diagnostic.
  • 关键词:enradiation mechanisms: thermalSun: atmosphereSun: filaments, prominences
国家哲学社会科学文献中心版权所有