摘要:The study proposed the chip formation steady-state model and cutting efficiency model for multi-cutters by Taylor tool life and fractal equation according to uniform chip thickness in high-speed band sawing process. Furthermore, a kind of new hook-tooth can be successfully applied on continuously uniformed chip formation in order to raise the production precision. The study developed MDOF cutting dynamics, which can be applied on multi-cutting process by Taylor tool life and fractal equations. Factors of affecting band-sawing included the cutting force, the cutting geometry, the cutting heat, the local stress-strain and the chip thickness formation uniformity. These factors had an important influence on tool wear, surface roughness, production precision and cutting efficiency in high-speed sawing process. The simulated results shown that, the wear resistance property is better at coating TiN 0.6 μm. In high-speed cutting process, the cutting improvement rate can be increased at least 13%. While the hook-tooth cutting speed achieved 120 m/min, comparing with non-coating cutting tooth, coating 0.6μm coating-layer can make the temperature decreased, obviously.