摘要:Abstract
Time series often contain breakpoints of different origin, i.e. breakpoints, caused by (i) shifts in trend, (ii) other changes in trend and/or, (iii) changes in variance. In the present study, artificially generated time series with white and red noise structures are analyzed using three recently developed breakpoint detection methods. The time series are modified so that the exact “locations” of the artificial breakpoints are prescribed, making it possible to evaluate the methods exactly. Hence, the study provides a deeper insight into the behaviour of the three different breakpoint detection methods. Utilizing this experience can help solving breakpoint detection problems in real-life data sets, as is demonstrated with two examples taken from the fields of paleoclimate research and petrology.
关键词:Keywordsartificial noisechangepoint model frameworkcross entropy methodkink point analysispaleoclimatepetrophysicstime series analysis