首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Regularized Moving-Horizon PWA Regression for LPV System Identification ⁎
  • 本地全文:下载
  • 作者:Manas Mejari ; Vihangkumar V. Naik ; Dario Piga
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:15
  • 页码:1092-1097
  • DOI:10.1016/j.ifacol.2018.09.048
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper addresses the identification ofLinear Parameter-Varying(LPV) models through regularized moving-horizonPieceWise Affine(PWA) regression. Specifically, the scheduling-variable space is partitioned into polyhedral regions, where each region is assigned to a PWA function describing the local affine dependence of the LPV model coefficients on the scheduling variable. The regression approach consists of two stages. In the first stage, the data samples are processed iteratively, and aMixed-Integer Quadratic Programming(MIQP) problem is solved to cluster the scheduling variable observations and simultaneously fit the model parameters to the training data, within a relatively short moving-horizon window of the past. At the second stage, the polyhedral partition of the scheduling-variable space is computed by separating the estimated clusters through linear multi-category discrimination.
  • 关键词:KeywordsLinear parameter-varying modelsPWA regressionMixed-integer programming
国家哲学社会科学文献中心版权所有