首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Parameter Identification of Linear Discrete-Time Systems with Guaranteed Transient Performance ⁎
  • 本地全文:下载
  • 作者:Alexey A. Belov ; Romeo Ortega ; Alexey A. Bobtsov
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:15
  • 页码:1038-1043
  • DOI:10.1016/j.ifacol.2018.09.057
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractDynamic regressor extension and mixing is a new technique for parameter estimation that has proven instrumental in the solution of several open problems in system identification and adaptive control. A key property of the estimator is that, for linear regression models, it guarantees monotonicity of each element of the parameter error vector that is a much stronger property than monotonicity of the vector norm, as ensured with classical gradient or least-squares estimators. The main result of this paper is to give new techniques for deriving explicit conditions on the exogenously specified reference trajectory to guarantee parameter convergence for a class of linear discrete-time single-input single-output systems. A numerical example is given.
  • 关键词:KeywordsIdentification algorithmsPersistent excitationParameter convergence
国家哲学社会科学文献中心版权所有