首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Convergence in Networked Recursive Identification with Output Quantization
  • 本地全文:下载
  • 作者:Sholeh Yasini ; Torbjörn Wigren
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:15
  • 页码:915-920
  • DOI:10.1016/j.ifacol.2018.09.077
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper analyzes conditions for global parametric convergence of a networked recursive identification algorithm. The FIR based algorithm accounts for networked delay and signal quantization. The paper constructs counterexamples to parametric convergence using low order dynamic models and an asymmetric binary quantizer. The associated ODEs of the first order model are analysed with analytical methods and by numerical simulation. In particular, the analysis proves that parametric convergence does not occur in case the input signal distribution is discrete taking a finite number of values, the problem is symmetric, or in case the input signal distribution, dynamic gain and switch point are such that there is no signal energy in an arbitrary small neighborhood of any switch point. Global parametric convergence is also proved for one of the low order cases.
国家哲学社会科学文献中心版权所有