首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Data-Driven Impulse Response Regularization via Deep Learning
  • 本地全文:下载
  • 作者:Carl Andersson ; Niklas Wahlström ; Thomas B. Schön
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:15
  • 页码:1-6
  • DOI:10.1016/j.ifacol.2018.09.081
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe consider the problem of impulse response estimation of stable linear single-input single-output systems. It is a well-studied problem where flexible non-parametric models recently offered a leap in performance compared to the classical finite-dimensional model structures. Inspired by this development and the success of deep learning we propose a new flexible data-driven model. Our experiments indicate that the new model is capable of exploiting even more of the hidden patterns that are present in the input-output data as compared to the non-parametric models.
  • 关键词:KeywordsLinear system identificationimpulse response estimationflexible modelsdeep learningregularizationGaussian processes
国家哲学社会科学文献中心版权所有