首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Sparse Bayesian ARX models with flexible noise distributions ⁎
  • 本地全文:下载
  • 作者:Johan Dahlin ; Adrian Wills ; Brett Ninness
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:15
  • 页码:25-30
  • DOI:10.1016/j.ifacol.2018.09.085
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper considers the problem of estimating linear dynamic system models when the observations are corrupted by random disturbances with nonstandard distributions. The paper is particularly motivated by applications where sensor imperfections involve significant contribution of outliers orwrap-aroundissues resulting in multi-modal distributions such as commonly encountered in robotics applications. As will be illustrated, these nonstandard measurement errors can dramatically compromise the effectiveness of standard estimation methods, while a computational Bayesian approach developed here is demonstrated to be equally effective as standard methods in standard measurement noise scenarios, but dramatically more effective in nonstandard measurement noise distribution scenarios.
  • 关键词:KeywordsBayesian inferenceHamiltonian Monte CarloGaussian mixture models
国家哲学社会科学文献中心版权所有