首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:A Kalman filtering approach to traffic flow estimation in computer networks
  • 本地全文:下载
  • 作者:G. Pozzi ; S. Formentin ; P. Lluka
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:15
  • 页码:37-42
  • DOI:10.1016/j.ifacol.2018.09.087
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, data-based estimation of traffic flows in computer networks is dealt with. The knowledge of the traffic matrix, containing the values of flows among the nodes in a computer network, could be very useful in many aspects of network management, like capacity planning, traffic load distribution and anomaly detection. The proposed technique exploits a new observer based on Kalman filtering, suitably modified to better fit into the specific application framework. Experimental results on a Metropolitan Area Network in Milan (Italy) show that the proposed method may obtain very low error rates even in presence of severe technological constraints.
  • 关键词:KeywordsKalman filtercomputer networkstraffic estimationidentificationstate space models
国家哲学社会科学文献中心版权所有