首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:ARX Model Estimation of Multivariable Errors-in-Variables Systems ⁎
  • 本地全文:下载
  • 作者:Xin Liu ; Yucai Zhu
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:15
  • 页码:874-879
  • DOI:10.1016/j.ifacol.2018.09.111
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper proposes a method for the estimation of ARX (Autoregressive with external input) model of multivariable errors-in-variables (EIV) systems. In parameter estimation, the input noise variances need to be estimated in order to obtain a consistent estimate. Two methods are developed to estimate the input noises variances. One way is to minimize a correlated output error criterion. The other way is to extract the input noises variances from the power spectrum of measured inputs. When the input noise variances are known, a modified least-squares method will give consistent estimate for the EIV system. Numerical simulations are used to illustrate the performance of the method. This work lays down a basis for extending the asymptotic method of Liu and Zhu (2017) to multivariable EIV systems which starts from a high order ARX model estimation.
  • 关键词:Keywordsmultivariable errors-in-variables systemsARX modelinput noises variancescorrelated output error criterionpower spectrum extraction
国家哲学社会科学文献中心版权所有