首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Using Decoupling Methods to Reduce Polynomial NARX Models ⁎
  • 本地全文:下载
  • 作者:David T. Westwick ; Gabriel Hollander ; Kiana Karami
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:15
  • 页码:796-801
  • DOI:10.1016/j.ifacol.2018.09.133
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe polynomial NARX model, where the output is a polynomial function of past inputs and outputs, is a commonly used equation error model for nonlinear systems. While it is linear in the variables, which simplifies its identification, it suffers from two major drawbacks: the number of parameters grows combinatorially with the degree of the nonlinearity, and it is a black box model, which makes it difficult to draw any insights from the identified model. Polynomial decoupling techniques are used to replace the multiple-input single-output polynomial with a decoupled polynomial structure comprising a transformation matrix followed by bank of SISO polynomials, whose outputs are then summed. This approach is demonstrated on two benchmark systems: The Bouc-Wen friction model and the data from the Silverbox model. In both cases, the decoupling results in a substantial reduction in the number of parameters, and allows some insight into the nature of the nonlinearities in the system.
  • 关键词:KeywordsNonlinear System IdentificationNARX ModelsPolynomial Decoupling
国家哲学社会科学文献中心版权所有