首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Nonlinear Hybrid Systems Identification using Kernel-Based Techniques ⁎
  • 本地全文:下载
  • 作者:Anna Scampicchio ; Alberto Giaretta ; Gianluigi Pillonetto
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:15
  • 页码:269-274
  • DOI:10.1016/j.ifacol.2018.09.146
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractHybrid systems can describe in an unified setting many processes which combine continuous/discrete dynamics and logic rules. Their identification from input/output data is however difficult since it requires to jointly solve a classification and estimation problem. Restricting the attention to piecewise linear models, recent research has shown how these difficulties can be successfully faced combining Gaussian regression and stochastic simulation techniques. In this paper we extend this approach to systems composed by nonlinear submodels. Numerical examples regarding estimation of discontinuous functions and identification of piecewise nonlinear dynamic systems are then included to illustrate the potential of the new approach.
  • 关键词:KeywordsHybrid systemsKernel methodsGaussian processesFunction approximationNonlinear systemsRegularizationSystem identificationMachine LearningSwitching functionsSubsystems
国家哲学社会科学文献中心版权所有