首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Modeling of the Three-way Catalytic Converter by Recurrent Neural Networks ⁎
  • 本地全文:下载
  • 作者:Klemens Schürholz ; Daniel Brückner ; Melissa Gresser
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:15
  • 页码:742-747
  • DOI:10.1016/j.ifacol.2018.09.166
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractFor offline development and calibration of On-Board Diagnosis functions of the exhaust gas aftertreatment system a model of the three-way catalytic converter is essential. The goal of the method presented here is to approximate the conversion behavior of a three way catalytic converter by a model which is suitable for application in such a simulation environment. To that purpose we followed a Black Box modeling approach using Recurrent Neural Networks (RNNs) and compared different training and model settings in a case study. In order to increase training efficiency and model accuracy we investigated transfer learning techniques to transfer knowledge from physical models to the RNN model.
  • 关键词:KeywordsNeural networksAutomotive emissionsLearning algorithmsRecurrent Neural NetworksPhysical ModelTransfer learningThree-way Catalytic Converter
国家哲学社会科学文献中心版权所有