首页    期刊浏览 2025年06月25日 星期三
登录注册

文章基本信息

  • 标题:Maximum Likelihood identification of Wiener-Hammerstein system with process noise
  • 本地全文:下载
  • 作者:Giuseppe Giordano ; Jonas Sjöberg
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:15
  • 页码:401-406
  • DOI:10.1016/j.ifacol.2018.09.178
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe Wiener-Hammerstein model is a block-oriented model consisting of two linear blocks and a static nonlinearity in the middle. We address the identification problem of this model, when a disturbance affects the input of the non-linearity, i.e. process noise. For this case, a Maximum Likelihood estimator is derived, which delivers a consistent estimate of the model parameters. In the presence of process noise, in fact, a standard Prediction Error Method normally leads to biased results. The Maximum Likelihood estimate is then used together with the Best Linear Approximation of the system, in order to implement a complete identification scheme when the parametrization of the linear blocks is not known a priori. The computation of the likelihood function requires numerical integration, which is solved by Monte Carlo and Metropolis-Hastings techniques. Numerical examples show the effectiveness of the identification scheme.
  • 关键词:KeywordsNon-linear systemsMaximum LikelihoodBest Linear ApproximationWiener-Hammersteinprocess noise
国家哲学社会科学文献中心版权所有