首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Sampled-Data Based State and Parameter Estimation for State-Affine Systems with Uncertain Output Equation
  • 本地全文:下载
  • 作者:Tarek Ahmed-Ali ; Koen Tiels ; Maarten Schoukens
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:15
  • 页码:491-496
  • DOI:10.1016/j.ifacol.2018.09.193
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe problem of sampled-data observer design is addressed for a class of state- and parameter-affine nonlinear systems. The main novelty in this class lies in the fact that the unknown parameters enter the output equation and the associated regressor is nonlinear in the output. Wiener systems belong to this class. The difficulty with this class of systems comes from the fact that output measurements are only available at sampling times causing the loss of the parameter-affine nature of the model (except at the sampling instants). This makes existing adaptive observers inapplicable to this class of systems. In this paper, a new sampled-data adaptive observer is designed for these systems and shown to be exponentially convergent under specific persistent excitation (PE) conditions that ensure system observability and identifiability. The new observer involves an inter-sample output predictor that is different from those in existing observers and features continuous trajectories of the state and parameter estimates.
  • 关键词:KeywordsAdaptive observerSampled-data nonlinear systems
国家哲学社会科学文献中心版权所有