首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Improving the particle filter in high dimensions using conjugate artificial process noise
  • 本地全文:下载
  • 作者:Anna Wigren ; Lawrence Murray ; Fredrik Lindsten
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:15
  • 页码:670-675
  • DOI:10.1016/j.ifacol.2018.09.207
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe particle filter is one of the most successful methods for state inference and identification of general non-linear and non-Gaussian models. However, standard particle filters suffer from degeneracy of the particle weights, in particular for high-dimensional problems. We propose a method for improving the performance of the particle filter for certain challenging state space models, with implications for high-dimensional inference. First we approximate the model by adding artificial process noise in an additional state update, then we design a proposal that combines the standard and the locally optimal proposal. This results in a bias-variance tradeoff, where adding more noise reduces the variance of the estimate but increases the model bias. The performance of the proposed method is empirically evaluated on a linear-Gaussian state space model and on the non-linear Lorenz’96 model. For both models we observe a significant improvement in performance over the standard particle filter.
  • 关键词:KeywordsData assimilationSequential Monte CarloEstimationfilteringState-space modelsNonlinear system identification
国家哲学社会科学文献中心版权所有