首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Constructing Metropolis-Hastings proposals using damped BFGS updates ⁎
  • 本地全文:下载
  • 作者:Johan Dahlin ; Adrian Wills ; Brett Ninness
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:15
  • 页码:664-669
  • DOI:10.1016/j.ifacol.2018.09.208
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe computation of Bayesian estimates of system parameters and functions of them on the basis of observed system performance data is a common problem within system identifcation. This is a previously studied issue where stochastic simulation approaches have been examined using the popular Metropolis-Hastings (MH) algorithm. This prior study has identified a recognised difficulty of tuning theproposal distributionso that the MH method provides realisations with sufficient mixing to deliver efficient convergence. This paper proposes and empirically examines a method of tuning the proposal using ideas borrowed from the numerical optimisation literature around efficient computation of Hessians so that gradient and curvature information of the target posterior can be incorporated in the proposal.
  • 关键词:KeywordsBayesian parameter inferencestate-space modelsquasi-NewtonBFGS
国家哲学社会科学文献中心版权所有