首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A set-based model-free reinforcement learning design technique for nonlinear systems
  • 本地全文:下载
  • 作者:Martin Guay ; Khalid Tourkey Atta
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:18
  • 页码:37-42
  • DOI:10.1016/j.ifacol.2018.09.242
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this study, we propose an extremum-seeking approach for the approximation of optimal control problems for unknown nonlinear dynamical systems. The technique combines a phasor extremum seeking controller with an reinforcement learning strategy. The learning approach is used to estimate the value function of an optimal control problem of interest. The phasor extremum seeking controller implements the approximate optimal controller. The approach is shown to provide reasonable approximations of optimal control problems without the need for a parameterization of the nonlinear control system. A simulation example are provided to demonstrate the effectiveness of the technique.
  • 关键词:KeywordsExtremum-seeking controlReinforcement learningphasor approximation
国家哲学社会科学文献中心版权所有