首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Automated System Identification in Mineral Processing Industries: A Case Study using the Zinc Flotation Cell
  • 本地全文:下载
  • 作者:Yuri A.W. Shardt ; Kevin Brooks
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:18
  • 页码:132-137
  • DOI:10.1016/j.ifacol.2018.09.288
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn many industries, including the mineral processing industry, process modelling can be improved by mining the data historian. However, the data in the historian is often contaminated with missing values, unknown operating conditions, and other imperfections. Furthermore, manual segmentation of the data is difficult due to the large number of data points and variables. Thus, there is a need to develop and implement methods that can automatically segment the data set into viable components for identification purposes. One approach uses Laguerre models to segment the data set. However, when used in a multivariate situation, such as in the zinc flotation cell, various issues, such as collinearity, arise. Therefore, the data segmentation algorithm needs to take this into consideration when examining a data set. Using the zinc flotation cell, it is shown that for the multivariate case preselecting the data variables to consider improves the data segmentation.
  • 关键词:Keywordssystem identificationdata miningzinc flotation cell
国家哲学社会科学文献中心版权所有