首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:LWS based PCA subspace ensemble model for soft sensor development
  • 本地全文:下载
  • 作者:Xudong Shi ; Weili Xiong
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:18
  • 页码:649-654
  • DOI:10.1016/j.ifacol.2018.09.350
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractMost regression approaches, such as principal component analysis (PCA), are based on an assumption that the process data follow a Gaussian distribution. However, the process data usually dissatisfy that assumption. Thus, the locally weighted standardization (LWS) method is employed for transforming data into an approximate Gaussian distribution. Furthermore, the LWS based subspace PCA ensemble modeling method is developed. The subspace PCA can select important variables in each subspace for ensemble modeling. As a result, the proposed method gives a weaker assumption constrain and a better regression performance. The effectiveness of this approach is testified by two study cases.
  • 关键词:KeywordsSoft sensorNon-Gaussian dataPrincipal component AnalysisSubspace ensemble learning
国家哲学社会科学文献中心版权所有